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Density Functional Approximations for Classical 
Fluids with Long-Range Interactions 
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Density functional approximations for systems interacting via long-range forces 
are revisited. The theory is illustrated with examples of one-component plasmas 
in two and three dimensions. 
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1. I N T R O D U C T I O N  

The theory of inhomogeneous classical fluids in thermal equilibrium has 
progressed in two major directions. Most highly developed are integral 
equation methods, which can be sequentially corrected and lead to results 
of very high accuracy, but often at a computational cost that rivals that of 
computer simulations. Here, we will devote our attention to density func- 
tional methods, which are in a more rudimentary state. They give decent 
accuracy at low computational cost, but too often resemble recipes more 
than reliable logical procedures, and it is usually not clear how they are 
to be improved. Systematic improvement by means of integral equations 
techniques based upon entropy functional expansions is certainly possible, ~1) 
but simplicity is sacrified in the process. A traditional approach under these 
circumstances is to push current practice to the point that its drawbacks 
become obvious and, more constructively, suggest improvements. The tool 
we use for pushing in this study is the Coulomb fluid, whose very long-range 
interaction renders it highly sensitive to approximations. In the particular 
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case of a two-dimensional fluid at a special temperature, exact results are 
available, making comparison much easier to perform (see also Alastuey 
and Levesque (2' 3)). We will see that typical density functional formulations 
are inapplicable here, and focus on two that do apply, first in the context 
of the same two-dimensional model, and then for corresponding three- 
dimensional systems, in a slightly different context. 

2. T H E  D E N S I T Y  F U N C T I O N A L  F O R M A T  

The undoubted progenitor of current density functional theory is the 
mean-field model of van der Waals. In terms of the "intrinsic" free energy 

if[n] = F -  I n(r) u(r) dr (1) 

it takes the form 

= Fid[n] + [ n(r) ~,,(n(r)) F dr 
d 

+ �89 f l  n(r) n(r') A~b(r - r') dr dr' (2) 

Here F is the Helmholtz free energy, n(r) the particle density, and u(r) the 
external potential. Entering into (2) is the implicit decomposition of the 
pair interaction potential, assumed to be the only internal interaction, 

~b(r - r') = q~o(r - r') + A~b(r - r') (3) 

into a short-range core ~bo and a long-range tail zl~, with 

1 
I n(r)[ln n ( r ) -  1] dr (4) F id = 

the ideal gas free energy, and ~o(n) the excess free energy per particle of 
a uniform fluid of density n, reciprocal temperature /~, in which only the 
core interaction is present. Qualitatively, (2) pictures the core fluid as 
locally uniform at any applicable scale of resolution. Equation (2) gives as 
well the profile equation 

fiF 
#(r) = 

fin(r) 

=~lnn(r)+l~o(n(r))+fn(r')dq~(r-r')dr' (5) 
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for the local chemical potential # ( r )= /~ -u ( r ) ,  u(r) denoting the external 
potential that leads to the possible inhomogeneity [-for u(r):~ 0], and po(n) 
derived from ~Uo(n). 

The information required by (2) is both meager--the equation of state 
Po(n)--and experimentally nontrivial--the excess pair interaction A~b(r- r'). 
And the realm of quantitative validity is not extensive. To mitigate all 
three, one may modify (2) by the introduction of effective functions, to be 
determined by subsidiary numerical or physical experiment. Perhaps the 
simplest such modification, arising from a linear response expansion, is the 
generalization of the mean field S A~b(r-r') n(r)dr seen by a particle at r' 
to the nonlinear version S W ( r -  r', n(r))d(r), so that 

F[n]=fn(r)fo(n(r))ar+�89 (6) 

where fo denotes the full free energy per particle in a uniform system, here 
with cores alone. Setting off the density pattern by a bar, it follows that 

#(r I n) =/~o(n(r)) + �89 f W(r - r', n(r')) d r '  

+ �89 n(r') W'(r-r',n(r))dr' (7) 

where W'(r,n)=OW(r,n)/an. Differentiating again yields the standard 
complete direct correlation function 

C((r, r '[n) = 6(r - r')/n(r) - c2(r, r ' ln) 

in the form 
_ 1 1 
1 C(r, r '[n) =/fo(n(r)) 6(r - r') + ~ W'(r - r', n(r')) + ~ W'(r - r', n(r)) 

1 r ,, 
+ ~ J n ( r  ) W"(r-r",n(r))dr"6(r-r ' )  (8) 

Only W ( r - r ' ,  n), a function of a vector variable and a scalar, has to be 
determined. This is done by assuming that the full uniform system direct 
correlation C ( r -  r', n) is known, and with it, the thermodynamics via 

1 t" 

J cIr,  n )dr  = ~,'(,,) (9) 

d(nf(n)) 
p(r) = dn (10) 
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After a little algebra, (6) then reduces to 

F in ]  = I n(r) f(n(r))  dr 

1 f.(r) 4fl I I  (n(r) - n(r')) ",,(,') C(r-r',n)dndrdr' (11) 

The reference system is no longer needed, and the formulation is 
unchanged in the quantum domain, where, however, the bulk inverse linear 
response C ( r - r ' ,  n) is no longer related to the directly measurable static 
structure factor and no longer has a 6 ( r - r ' ) / n  singularity. 

From (11) we have at once the profile equation 

~--~[f"(r)(C(r-r',n)+C(r r',n(r)))dndr' (12) #(r In) = #(n( r ) ) -  oo,,(r') 

and the direct correlation 

C(r, f i n )  = �89 - r', n(r)) + C(r - r', n(r'))) 

(13) 

The expression (11), which corrects in part the long-range mean-field 
aspect, is still deficient on small spatial scales, as signaled by the fact that 
(13) does not have the required (1 /n( r ) )6( r - r ' )  singularity. Indeed, the 
modifications that have preempted the field all in some fashion make use 
of an auxiliary weighted or effective density, representing a density in terms 
of which nominally local expressions attain short-scale validity as well. 
Simplest among these is that of Curtin and Ashcroft c4) 

F in ]  = F id + I n(r) ~U(v(r)) dr (14) 

in which the weighted density v(r) has a density-dependent weight, 

v(r)=f o~(r- r', v(r)) n(r') dr' (15) 

I co(r, n) dr = 1 (16) 
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From (15) 

&(r)  og(r - r'; v(r)) 
(17) 

fin(r) 1 - j  og'(r-r"; v(r))n(r")dr" 

so that (14) give rise to 

fl  n(r') ~'(v(r'))og(r-r'' v(r')), r' (18) 
#(rln)=~lnn(r)+ ~(v(r))+ l_~og,(r,_r,,v(r,))n(r,,)dr, d 

and then to 

1 -~C(r,r'ln) 
6 ( r - r ' )  + ~'(v(r))og(r-r',v(r)) 

/~n(r) 1-Sog'(r-r",v(r))n(r")dr" 
~'(v(r ' ))  og(r - r ' ,  v(r')) 

+ 
1 - j og'(r' - r", v(r')) n(r") dr" 

n(R) f + 
J [1 - ~ og'(R - r", v(R)) n(r") dr"-] 2 

- - -  ~ '(v(R)) og(r - R, v(R)) og(r' -- R, v(R)) dR 
~v(r) 

n(R) n(R') ff + 
JJ [1 - ~  og'(R - r " ,  v(R)) n(r") dr"]  3 

x ~ ' ( v (R) )og ( r -R ,  v (R) )og"(R-R ' ,  v(R)) 

x og(R - r ' ,  v(R)) dR dR' (19) 

To find o9, one again compares with C ( r - r ' ,  n) at uniform n( r )=n .  From 
S og(r, n ) d r =  1, and Fourier transforming, (19) yields 

0 = 2n ~ '(n)  ~(k, n) Co'(k, n) + n~"(n) Co'-(k, n) 
1 

+ 2~ ' (n)  o3(k, n) + ~ 62(k, n) (20) 

In general, (20) must be solved numerically, but without doing so, two 
things are clear: (1) Eq. (19) has exactly the correct short-range singularity, 
but (2) if 62 is 16ng range, i.e., diverges as k ~ 0, then so is ~b, leading to 
a very smeared-out weighted density. In fact, for Coulombic interaction, 
one sees that &(k, n) oc 1/k at low k and no normalizable weight function 
exists. 

An obvious next step, following Meister and Kroll Is~ and Groot and 
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van der Eerden, t61 is to introduce an effective density into both local free 
energy and mean-field potential, in the form 

/e[n, v] = Fid[n] + f  n(r) ~o(V(r)) dr 

+ �89 ;J" n(r') n(r) co(r - r'), v(r)) dr dr' (21) 

Since co already supplies a parametric function of a vector and scalar, it is 
not necessary to require the same for the weight function associated with 
v(r); it suffices to make (21) variational with respect to n and v (not 
necessarily a minimum): 

8F[n, v] 
#(r [ n) = ~ (22) 

fin(r) 

6F[n, v] 
0 = - -  (23) 

6v(r) 

Thus, 

1 1 I / a ( r l n ) = ~ l n n ( r ) +  ~ . ( v ( r ) ) + ~  n ( r ' ) t n ( r - r ' ,  v(r))dr '  

+ n(r') co(r - r', v(r')) dr' (24) 

where 

0 = ~'o(V(r)) + �89 f n(r) o~'(r -- r', v(r)) dr' (25) 

It follows from (24) th'at 

6v(r) - � 8 9  v(r)) 

6n(r') ~ " ( v ( r ) ) + � 8 9  v(r))dr" 

and so, from (24), using (25) as well, 

(26) 

1 6 ( r - r ' )  
C(r, r'ln)= #n(r~ 

1 1 
+ ~ oJ ( r - r ' ,  v(r))+ ~ ~o(r-r ' ,  v(r')) 

~/"(v(R)) + �89 J' n(R ) co '(R - R ,  v(R)) dR' dR 
(27) 
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Specializing to the uniform system, we then require 

1 1 n(&'(k, n))  2 

-fl 2 ~'(O,n) 
(28) 

Note that o3(0, n), and hence ~o(n), are now determined by the bulk 
thermodynamics. Once more, as with (20), the Coulomb interaction picks 
up a very long-range contribution to co(r, n). Here, however, normalization 
of co is not required; a long-range density-independent component of co will 
affect only the interaction parts of (21) and (24), and this turns out to be 
innocuous. The hint supplied in this fashion will play a crucial role in the 
reformulation of (14)-(16) that we will suggest. 

3. THE T W O - D I M E N S I O N A L ,  O N E - C O M P O N E N T  PLASMA 

In order to assess the adequacy of approximation methods, one needs 
a nontrivial system that has been solved exactly. The well-known and 
virtually unique example of such a system, incorporating long-range forces 
as well, is the two-dimensional Coulomb gas with point particles of charge 
q in a rigid homogeneous background. In the usual normalization, the pair 
potential is given by 

q ~ ( r )  = - -  q2 In(r/L) (29) 

where L is a suitable length required if only for dimensional reasons. At a 
temperature such that F =  flq2= 2, this model is exactly solvable even in a 
number of nonuniform cases. For the uniform system at density n, it is 
known ~7~ that the pair-correlation function h(r)---g(r)-1 is given by 

h(r) = - e . . . . .  2 (30) 

and from the convolution identity 

n ( l e  .... ~ / , , _ 1 ) .  e . . . .  2= m+ll e ..... 2/(m -b 1) ----ml (31) 

it follows that 

c~(r) = -  z_, - - ( e -  ' - 1 )  (32) 
m = l  m 

satisfies the Ornstein-Zernike equation h-c2=nh* c2 for the direct 
correlation function. However, c2(r) is undetermined to an additional 
constant, because nh �9 1 = - 1 in the present case. For long-range forces, 
one expects that c2(r)--,-fl~(r) as r--* 00, and it will be particularly 
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that 

Hence 

lira c~  + l n ( r 2 / L  2) = J j ( k )  ln (k2 /4rcnL 2) dk  (35) 
r ~  o~ 

= - 27 - ln(nnL 2) (36) 

where 7 = - F ' ( 1 )  is Euler's constant. We conclude that 

c2(r) = c~  + 27 + ln(nnL 2) (37) 

is the correctly normalized function. 
For an inhomogeneous system to serve as test case for assessing 

approximations, we choose an idealization which is not far from a situation 
of interest, that of an infinite fluid of asymptotic density n bounded by a 
hard wall for x ~< 0. Jancovici ~8~ has calculated the resulting particle density 

n ( x )  = 2n f ~ exp[ - (t - x (2nrO' /2 )  2 ] 
.v/~ Jo 1 + ~( t )  dt (38) 

where x is the distance to the wall, and q~(t) the error function 

�9 ( t ) = ~  e x p ( - u  2)du (39) 

In greater detail he found that the total correlation function is given by 

h ( x l ,  Y l ,  x2 ,  Y2) 

= -- exp[--nrt(xj  -- x2) 2] 4 (40) 
7~ 

f :  exp{ - [ t -  ( x l  + x2) (nr t /2) l /2]  2 - i t ( y l  - y 2 ) ( 2 m t )  m } dt  2 
x 1 + ~ ( t )  

(41) 

where x~, x2 are the coordinates perpendicular to the wall, and Yl and Y2 
those parallel to the wall. 

convenient to arrange the additive normalization of c2 so 
c2(r) + ln(r2/L 2) --, 0 as r---, 0. For this purpose, we use the identity 

I: 1 - e . . . . .  2/,,, = J l ( k )  e . . . .  k2/4r~ d k  (33) 

where J~ is a Bessel function, so that 

Io cO= J l (k)  ln(1 - e - k 2 / 4 ~ " r 2 ) d k  (34) 
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4. M O D I F I E D  DENSITY F U N C T I O N A L S  

The very long-range, even divergent, form of c2(r) for the one-compo- 
nent plasma renders unsuitable the usual weighted density functionals, 
since the weight function co always picks up some of the long-range charac- 
ter. The simplest cure is to eliminate the long-range interaction at least in 
mean-field form, at the outset. For example, an intermediate between (14) 
and (21) is 

F =  Fid[n] + f n(r) ~(v(r)) dr 

+ �89 f~ (n(r) - n)(n(r') - n) A~(r - r') dr dr' (42) 

Note that we have included a neutralizing background (for Coulomb 
forces) of density n, corresponding to a Hamiltonian whose interaction is 
taken as 

�89 A~b(ri- r2)-  f n zlq~(r;-r)dr + �89 ff n 2 a~b( r - r ' )d r  dr' 

is any finite domain. 
Equation (42) is in fact identical with an expression suggested some 

years ago by Tarazona and Evans, t91 but rather than follow their approach 
and guess reasonable forms for the effective density v, we again construct 
it as in (15) from the weight co, and determine co by reproducing the 
uniform fluid correlation structure; see also Jones and Gunnarsson. ~1~ 
Proceeding precisely as in (15), we now have 

in) = ~ In n(r) + ~(v(r))  + f (n(r) -- n) Ll~(r - r') dr' //(r 

f n(r') ~'(v(r')! c o ( r - f ,  v(r')) + dr'  (43) 
2 1 : }-~-7~7---~, v-77'D n(r")dr" 

from which C(r, f i n ) i s  computed, and (20) replaced by 

0 = 2n~'(n) &(k, n) &'(k, n) + n~"(n)  cb-'(k, n) 

1 
+ 2 ~'(n) cb(k, n) + ~ ?2(k, n) + A~(k) (44) 

Indeed, as a result of this modification, only the combination c2 + 13 d~b 
occurs, so that long-range terms do not appear. 
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There is another option, which is to work directly with the "profile 
equation" for/~(rln). For example, a locally homogeneous effective density 
profile equation corresponding to (14) would be 

/~(r I n) = ~ In n(r) + #e~(v(r)) (45) 

and so the corresponding mean-field subtracted version would take the 
form 

1 
+ J  (n(r' n) Llff(r (46) #(rln)=-~lnn(r)+t~c~(v(r)) )- - r ' )  dr' 

Differentiating, using (4), and evaluating at uniformity, we replace (44) by 
the much simpler 

1 
/a'cx(n) co(r, n) + ~ (c,(r, n) + fl z/q~(r)) = 0. (47) 

Again, as in (44), the long-range pathology does not affect co(r). Of course, 
both (43) and (46) suffer from the simultaneous advantage and disadvan- 
tage that the precise subtraction of zl~b(r) is up to the practitioner. And (46) 
has the same in-principle drawback as does (45), that it is not integrable, 
i.e., does not come from the variation of a free energy. One knows that this 
can produce inconsistencies if used carelessly, but that they can be avoided. 
To be sure, an expression of the simplicity of (47) has been obtained by 
Denton and Ashcroft in the free energy format I~1 tailored for periodic 
inhomogeneities, in which the idea of a uniform effective density makes 
sense, and also in the one-particle direct correlation function format. 1~2~ 
These authors also used (45) to generate approximations to higher dis- 
tribution functions. 

5, S U M  R U L E S  

In assessing an approximation method, it is clearly useful to have, in 
addition to the full profile, single quantities that can serve as figures 
of merit. There are many such sum rules, almost all derivable from the 
classical statistical mechanical identity 

(A Aflq~)= (VA)  (48) 

for any observable A, any coordinate derivative V, and the full potential 
energy ~. In general, this involves muitisite correlations, and thereby 
requires detailed information, whose accuracy one cannot reasonably 
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demand. In the case of a Coulomb interaction fluid, constrained by a 
plane boundary, there are nontrivial sum rules depending only on a one- 
dimensional one-site density profile. Physically they result from the perfect 
shielding of the classical plasma and the fact that the boundary used, an 
ideal insulating plane, can have no charge accumulation. 

Actually the most useful form of (48) is that in which A is the 
microscopic density of a specified particle and V the corresponding 
gradient. This gives rise to the second of the YBG hierarchy 

Vn(r) = n(r) Vflu(r) + f n2(r, r') Vfl<b(r - r') d r ' =  0 (49) 

In the present case, the only external potential is a rigid wall, but there is 
a uniform background of negative source interactions; thus (49) becomes 

Vn(r) = f (n2(r, r') - n(r)n) V/~(b(r - r') dr'  0 (50) 
d 

inside the accessible volume. At the temperature corresponding to F =  2 in 
the two-dimensional Coulomb fluid, /~b(r )=- in(r2 /L2) ,  so that for the 
plane symmetric configuration of interest, (50) reduces to 

n'(x) = - 2 1 (n2(x, x', y -  y ' ) -  n(x)n) 
X--X' 

( x -  x')  2 + ( . v -  y,)2 
dx' dy' 

= -- 2 ~ (nz(x,  x' ,  y -- y ' ) -  n (x )  n (x ' ) )  
t 

X - - X  

( x - - x ' )  2 + ( y -  y')~- 
dx'  dy' 

= - 2 r t  I ( n ( x ' ) - n )  n (x )  s g n ( x -  x') dx' (51) 

Taking the limit x --, oo in (51) yields 

/ ( n ( x ' ) - n ) d x ' = O  (52) 

which is the perfect shielding sum rule. 
Choquard et al. ~13~ derived relations between different definitions of 

the pressure for one-component systems with long-range forces, among 
them 

f? ~p(k~_ 13p(Oj = 27tF x ( n ( x )  -- n) dx (53) 

where the kinetic pressure is 

flplk l = n( O ) (54) 
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and the thermal pressure is 
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which can be written as the sum rule 

2 r t F ; : x ( n ( x ) - n ) d x = n ( O ) - n ( 1 - ~ l ~  (56) 

How well do our approximations fare with respect to (52) and (56)? Both 
approximations of Section 4 have the form 

A(r) = f n(r ')  - n)fl A~(r - r ')  dr '  (57) 

We will choose/3 Ar =/~r the full potential, so that in the plane geometry 

f? 4 ' (x )  = - 2re (n(x')  - n) sgn(x - x ' )  dx' 

F fo = 2 ~  ( n ( x ' ) - n ) d x ' - 2 ~  ( n ( x ' ) - n ) d x '  (58) 
.x" 

and in particular 

2 A'lao) = - 2 g  ( n ( x ' ) - n ) d x '  (59) 

Now in absence of external fields inside the accessible volume, the approx- 
imations of Section 4 read, respectively, 

A(r) = In n -- In n(r) + flPex(n) -- ~(v(r))  

_ I'j 1" C y ~ o ~ ,  n(r ')  ~ ' (v( r '  !) co(r -- r', v(r')) v--~-' ) - ~  r"-';;~" dr' (60) 

d( r )  = In n - In n(r) + flp,x(n) - flpr (61) 

Since n(r) and v(r) approach n very rapidly as x --* ~ ,  and S og(r, v) dr  = 1, 
~ co'(r, v) d r =  0, fll~ex(n)=~(n)+nT"(n), it is easily shown that z l ' ( ~ )  
= A ( ~ ) = 0  in both cases, so that (57) is satisfied. 
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From (58), now in the form d ' (x )=4n j ' .~  (n(x ' )-n)dx' ,  it follows 
that 

s? - d ( 0 )  =4~ (n(x ' ) -n)  dx' (62) 

By virtue of the very simple f lFex/N=-�89189 2) for the 
uniform Coulomb fluid, we have 

flPex = C -  �89 In n (63) 

tiM= C ' -  �89 Inn (64) 

for suitable constants C, C' and the two weight functions thereby reduce to 

lco(k,n)-lco2(k,n)+Co(k,n)Co'(k,n)=?dk,  n)+fl~(k) (65) 
2 

1 
~no~(r,n)=cdr, n)+fl~(r) (66) 

in the two cases. However, there seems to be no direct connection between 
(60), (61), (65), and (66) and the sum rule (56). The comparison will have 
to be made numerically. 

6. T W O - D I M E N S I O N A L  W A L L - B O U N D E D  P L A S M A :  
N U M E R I C A L  C A L C U L A T I O N  

Let us now compare the two approximation schemes with exact results 
for the two-dimensional, one-component plasma bounded by an ideal wall. 
As mentioned above, we choose the full interaction d~b(r) =~b(r) for the 
mean-field component. For both approximations, our numerical iterations 
start from the exact density profile and then minimize the difference 
between the bulk chemical potential and the right-hand side of (43) and 
(46) at each grid point. In principle, there is no need of choosing bulk 
density other than n =  1, since the profile scales trivially with density: 
n(x)/n =f(n~/Zx), but we have done so anyway as a test of our primitive 
minimization procedure. 

The calculations for the two approximations are similar, and some parts 
even identical. An example is the integral term in the chemical potential: 

#c(r) = ' f  In(r) - n] fl~(r - r') dr '  

= - [n(x ' ) -n]  l n [ ( x -  x')2 + y'23 dx' dy' (67) 

822/76/1-2-28 
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[the In L term vanishes according to charge neutrality, (55)], which we 
rewrite as 

-I~ ;o'~ln[(x-x')2+ y'Z]dx'dY'fo~'[n(z)-n]dz (68) 

+,,x. ,69, = -~. [ n ( z ) - n ]  dz ( x _ x , ) 2 + y , =  

and hence as 

i~c(x)=2~sgn(x-x'){I:'[n(z)-n]dz}dx' (70) 

Charge neutralization sets in very rapidly and carrying the integration to 
x ' =  10 introduces negligible errors. 

The calculation of the weight function os in the first approximation 
must be performed numerically. We solve its equation iteratively as 

- (71) 
( O J + l  - -  1/2 - (1/2n)Coj+ @ 

2 

0 

~= 0 

-2 

/ /  /- / /  

/ / / /  

/ 
/ 

/ 
/ 

I 

-4 

-6 
0 

J J L L 

1 2 3 4 
r 

Fig, 1. The negative pair potential - f l ~ ( r )  (dashed line) and direct correlation function c2(r ) 
{solid line) when they are set equal at r = 5. In the calculation they are set equal at r = 10. 
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and Hankel transform back to real space. The resulting weight function has 
more mass at larger r than does c,_ + flO and truncation at r = 10 may give 
rise to values of the density that are too high. 

A comparison of approximations and exact profile (Fig. 2) shows that 
(a) the approximations overestimate the density close to the wall and 
underestimate it further away from the wall; the simple minimization pro- 
cedure is not perfect, but the difference in chemical potential from the bulk 
value decreases to around 5% of what it is for the exact profile, which 
served as a start for the calculation; and (b) the two approximations are 
nearly indistinguishable in this case. In Fig. 3 different densities are used to 
check the minimization procedures. The minimization is started from the 
same profile in all cases, and the increment is larger than for the com- 
parison of approximations, which is the reason for the different contact 
values. In any event, the contact values in Fig. 2 are certainly improved 
over what was obtained in the investigation by Alastuey et  al. of some 
other density functional approximations, c2' 3~ Evaluation of sum rules (52) 
and (56) shows charge neutrality within the accuracy of the calculation, 

1.1 

1.0 

n(r) 0.9 

0.8 

0.7 

/ S  1 A O  ' . . , , , . . 

1.00 ~ = 

0 . 9 5  . . . .  i . . . .  

0.5 1.0 1.5 

i i i i 

0'60.0 0.2 0.4 0.6 0.8 1.0 
r 

Fig. 2. Density profiles n(r) for the two approximations [dotted and dashed lines for 
Eqs. (42) and (46), respectively] against the exact but numerically evaluated one (solid line) 
for bulk density n=  1. The inset shows that the approximate curves cross the exact one, 
and do not violate charge neutrality within the accuracy given by the primitive minimization 
p r o c e d u r e .  
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Fig. 3. Normalized profiles [or the first approximation and three bulk densities n = 0.5, 1, 2 
(dashed, solid, long-dashed). The profiles result from the same start profile, and can be 
regarded as a test of the minimization procedure. 

and good agreement with (56) if the calculation is truncated at r = 2. The 
minimization procedure with its finite increment in density results in a 
small deviation from the "real" profile, which gives large contributions to 
the integral in (56) at large r. 

7. T H R E E - D I M E N S I O N A L  P L A S M A  

Since the two approximations produce in our test case results that 
are similar, this suggests that we stick to the simpler version (46), (47). 
A further check of its adequacy would be welcome. There are no further 
exactly solved long-range interaction models to rely on, so we turn instead 
to the more realistic three-dimensional, one-component plasma, not restric- 
ted to a single coupling constant. It is known from comparisons with 
simulations that the H N C  integral equation is very accurate for a wide 
range of couplings. Since most extensive HNC results are available for the 
uniform plasma, and they of course include the two-site distribution func- 
tion, let us take advantage of this by recasting the system as a nonuniform 
one. That is, we recall that the pair density of bulk fluid is obtainable from 
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the density at one site with a particle fixed at another site, and the latter 
to its equivalent external potential: 

n2(r, r ' )  = n(r I r ' )  n(r ' )  = n(rlur ,,) (72) 

where 

u~, r' (r) = ~b(r -- r ')  (73) 

sO that 

g(r) = n(rluc,.o)/n (74) 

Thus we can compare predictions of our approximation under the special 
external potential U~,o with the accurate H N C  solution for g(r). 

For  a three-dimensional Coulomb system, the dimensionless coupling 
constant is taken as 

F =  flq2(~n)l/3 (75) 

where n is the bulk density and hence the asymptotic density of our  non- 
uniform fluid. At fixed F, the density profile now scales as n(r)/n =f(n~/3r), 
so that we are free to set units to give n any desired value, which we will 
here take as n = 3/4n. 

In the system under study, the basic profile equation in our approx- 
imation becomes 

inn+f l~ex(n)+ flq'- = In n(r) + fl~edv(r)) + ( n ( r ' ) - n ) d r '  (76) 
r 

now translated as 

where h = g -  1, and the weight function is given by 

o~(r) = c2(r, n) + # 2 
flp'c~(r) 

Since exact information need not be consistent with a given approximation,  
we cannot  assume that /~'r and c2(r, n) are already known. Rather, 
c,_(r, n) is determined by the Ornstein-Zernike definition 

c2(r, n) = h(r, n) - n f h(r - r', n) c2(r', n) dr' (79) 
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and/~x by 

fll~(n'= - io' ~ (c2(r" n') + flq-~ dr' / 

The defining relation 

v(r) = I to(r --r ' ,  v(r)) n(r') dr' 

Nyberg and Percus 

(80) 

(81) 

is of course unchanged. 
In solving the approximation (77)-(81), there are several sources of 

numerical instability which can be recognized and guarded against. One is 
that, taking r---, oo in (76), the exact solution must satisfy 

n ~ h(r, n) dr = - 1 (82) 

the charge neutrality condition for the one-ion source. If (82) is not 

1.0 

0.8 #~/~/~ ~ 

g(r) 0.6 

0.4 

0.2 

0.0 
0.0 1.0 2.0 3.0 

r/a 

Fig. 4. The pair distribution function g(r) for coupling constant F =  0.9 from the hypernetted 
chain approximation (dashed line) and from the density functional approximation (solid lines) 
after 20, 50, and 80 iterations. The latter three functions overlap. The radius is dimensionless, 
r/a, where a = (3/4nn) ~/3. 
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satisfied, then (77) will produce a nonvanishing h for large r, which further 
exacerbates the failure of  (77). We have therefore enforced (82) by renor- 
malizing the g obtained from (77). 

Another  problem concerns the long-range behavior  of c2(r, n), which 
must  cancel that  of  fl@(r) to give the correct behavior  of og(r) in (78). This 
means that  ?~(k, n) is singular at k = 0, a singularity that  is equivalent to 
(82). But it is not  singular at r = 0 .  One way of controlling this behavior  
is to add to c2 not fl@, but the "help-function" 

f l~ , , ( r )  = f lq2 (1 - e - ; t r )  (83) 
r 

for which 

0( 2 

fl~,( k ) = 4ztflq 2 k2( k 2 + 0(2) (84) 

is also exactly known. If a >> dk ,  the k-space grid spacing, t~, coincides with 
(~ except at large k. 

1 0  

0,8 x / 

g(r) 0.6 

0.4 

0.2 

0.0 "~ ' ' ' ' ' 

P.0 1.0 2.0 3.0 
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Fig. 5. The pair distribution function g(r) for coupling constant F = 1.7 from the hypernetted 
chain approximation (dashed line) and from the density functional approximation (solid lines) 
after 20, 50, and 80 iterations. The latter three functions overlap. The radius is dimensionless, 
r/a, where a= (3/4nn) '/3. 
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The set (77)-(81) was solved numerically by starting at the HNC solu- 
tion for c2(r, n) and successively finding fl#~x(n), co(r), v(r), g(r, n), c2(r, n). 
Only functions corresponding to one density are iterated, and the quan- 
tities for effective densities different from the actual density are taken from 
HNC solutions. For F < 0 .1 ,  the end result was very close to the HNC 
input; for F = 0 . 9  and 1.7 (Figs. 4 and 5) there are only minor deviations. 
For F~> 2.6 (Fig. 6) the above iteration scheme was not convergent, and 
the same is found for higher F =  5.1, 7.2, and 9.1. Note that the usage of 
HNC solutions at the effective densities limits the possibilities of finding 
solutions deviating from the HNC solution, and the conclusion is that the 
simple density functional does not have solutions agreeing well with HNC 
for 2 < F < 9. In order to find solutions deviating from the HNC solutions, 
functions for a number of densities have to be iterated at the same time 
[see how the chemical potential from the HNC solution affects the pair dis- 

/ 

1.0 ~ -  . . . . . . . .  

0.8 

g(r) 0.6 z/~ 

0.4 iii IIl 

0.2 

o.o ~ , 
0.0 1.0 2.0 3.0 r/a 

Fig. 6. The pair distribution function g(r) for coupling constant F = 2.6 from the hypernetted 
chain approximation (dashed line) and from the density functional approximation (solid lines) 
after 1, 2, 5, 15, 20, and 30 iterations. The two solid lines closest to the HNC solution 
correspond to 1 and 2 iterations of the density functional approximation, and the deviation 
from the HNC solution grows with the number of the iteration (within the total number of 
iterations presented here). An example of nonconverging iterations. 
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tribution function in Eq. (77)'1. Of greater interest is to try the density 
functional with a free energy expression (42), which requires substantial 
new numerical work, and will be reported in the future. 

8. CONCLUSION 

This paper has dealt with strategies for applying weighted density 
functional methods, with that of Curtin and Ashcroft as prototypical, to 
systems with Coulomb interactions. The approximation developed by 
Curtin and Ashcroft is based on an expression for the free energy, with the 
first- and second-order and a subset of higher-order correlation functions 
being retained "exactly." The drawback of the approximation (42) is the 
numerical difficulty with calculating the weight function, which after 
Fourier transformation is described by a differential equation (20). Several 
attempts have been made to find approximations which are more con- 
venient to use but with similar properties. One alternative is to work 
directly with the profile equation, which makes the weight function simpler 
to calculate, but at the same time the resulting approximation (45) is less 
well motivated physically that the Curtin and Ashcroft approximation, 
since it is not derived from an exact free-energy expression. Several other 
simplified approximations of the same type can only be used for homo- 
geneous systems, and are of less interest to us. I~t' 14) 

The two approximations described in Section 4 are applied to a two- 
dimensional, one-component plasma, with similar results. When writing the 
chemical potential for the two approximations, there is an extra term for 
the Curtin and Ashcroft approximation [compare (43) and (46)], which 
has a limited size for our test system. A more pronounced inhomogeneity 
is needed for assessment, and the simpler approximation is applied to 
a homogeneous three-dimensional, one-component plasma, where the 
inhomogeneity is given by regarding the potential around one particle as 
an external field. The calculation is carried out in such a way that only 
solutions close to the HNC solution can be found, which is the case for 
coupling constants F < 2 .  The results indicate that the simple density 
functional approximation does not give an accurate solution for higher 
coupling constants. There is reason to believe that the Curtin and Ashcroft- 
type approximation would give a better result, tls~ but the numerical 
problems are not trivial, which is also documented in similar comparisons 
that have been "performed by Denton and Ashcrof( ~6~ and Brennan and 
Evans. ~7~ In both cases the interactions between particles are described by 
short-range potentials. 

Further numerical tests of other types of density functional approx- 
imations have been performed by Kroll and Laird ~8~ for a hard-sphere 
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f luid n e a r  a h a r d  wall.  H o w e v e r ,  t he  c ruc ia l  case  of  C o u l o m b  i n t e r a c t i o n  

ha s  n o t  b e e n  a t t e n d e d  to as  act ively ,  a n d  we sugges t  t h a t  the  m o d i f i c a t i o n s  

s t ud i ed  in th i s  p a p e r  a re  a n  effective e n t r e e  i n t o  th is  field. 
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